首页> 外文OA文献 >On the asymptotic stability and numerical analysis of solutions to nonlinear stochastic differential equations with jumps
【2h】

On the asymptotic stability and numerical analysis of solutions to nonlinear stochastic differential equations with jumps

机译:带有跳跃的非线性随机微分方程解的渐近稳定性和数值分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the stability and numerical analysis of solution to highly nonlinear stochastic differential equations with jumps. By the Itô formula, stochastic inequality and semi-martingale convergence theorem, we study the asymptotic stability in the pth moment and almost sure exponential stability of solutions under the local Lipschitz condition and nonlinear growth condition. On the other hand, we also show the convergence in probability of numerical schemes under nonlinear growth condition. Finally, an example is provided to illustrate the theory
机译:本文涉及具有跳变的高度非线性随机微分方程解的稳定性和数值分析。通过Itô公式,随机不等式和半-收敛定理,我们研究了局部Lipschitz条件和非线性增长条件下pth时刻的渐近稳定性以及几乎确定的指数稳定性。另一方面,我们还表明了非线性增长条件下数值格式的概率收敛性。最后,提供一个例子来说明理论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号